so:text
|
We are so accustomed to hear arithmetic spoken of as one of the three fundamental ingredients in all schemes of instruction, that it seems like inquiring too curiously to ask why this should be. Reading, Writing, and Arithmetic—these three are assumed to be of co-ordinate rank. Are they indeed co-ordinate, and if so on what grounds?
In this modern “trivium” the art of reading is put first. Well, there is no doubt as to its right to the foremost place. For reading is the instrument of all our acquisition. It is indispensable. There is not an hour in our lives in which it does not make a great difference to us whether we can read or not. And the art of Writing, too; that is the instrument of all communication, and it becomes, in one form or other, useful to us every day. But Counting—doing sums,—how often in life does this accomplishment come into exercise? Beyond the simplest additions, and the power to check the items of a bill, the arithmetical knowledge required of any well-informed person in private life is very limited. For all practical purposes, whatever I may have learned at school of fractions, or proportion, or decimals, is, unless I happen to be in business, far less available to me in life than a knowledge, say, of history of my own country, or the elementary truths of physics. The truth is, that regarded as practical arts, reading, writing, and arithmetic have no right to be classed together as co-ordinate elements of education; for the last of these is considerably less useful to the average man or woman not only than the other two, but than 267 many others that might be named. But reading, writing, and such mathematical or logical exercise as may be gained in connection with the manifestation of numbers, have a right to constitute the primary elements of instruction. And I believe that arithmetic, if it deserves the high place that it conventionally holds in our educational system, deserves it mainly on the ground that it is to be treated as a logical exercise. It is the only branch of mathematics which has found its way into primary and early education; other departments of pure science being reserved for what is called higher or university instruction. But all the arguments in favor of teaching algebra and trigonometry to advanced students, apply equally to the teaching of the principles or theory of arithmetic to schoolboys. It is calculated to do for them exactly the same kind of service, to educate one side of their minds, to bring into play one set of faculties which cannot be so severely or properly exercised in any other department of learning. In short, relatively to the needs of a beginner, Arithmetic, as a science, is just as valuable—it is certainly quite as intelligible—as the higher mathematics to a university student. (en) |