Mention25139

Download triples
rdf:type qkg:Mention
so:text When... we have a series of values of a quantity which continually diminish, and in such a way, that name any quantity we may, however small, all the values, after a certain value, are severally less than that quantity, then the symbol by which the values are denoted is said to diminish without limit. And if the series of values increase in succession, so that name any quantity we may, however great, all after a certain point will be greater, then the series is said to increase without limit. It is also frequently said, when a quantity diminishes without limit, that it has nothing, zero or 0, for its limit: and that when it increases without limit it has infinity or ∞ or 1⁄0 for its limit. (en)
so:isPartOf https://en.wikiquote.org/wiki/Augustus_De_Morgan
so:description The Differential and Integral Calculus (1836) (en)
qkg:hasContext qkg:Context12206
Property Object

Triples where Mention25139 is the object (without rdf:type)

qkg:Quotation23500 qkg:hasMention
Subject Property