so:text
|
Mathematics and philosophy are cultivated by two different classes of men: some make them an object of pursuit, either in consequence of their situation, or through a desire to render themselves illustrious, by extending their limits; while others pursue them for mere amusement, or by a natural taste which inclines them to that branch of knowledge. It is for the latter class of mathematicians and philosophers that this work is chiefly intended j and yet, at the same time, we entertain a hope that some parts of it will prove interesting to the former. In a word, it may serve to stimulate the ardour of those who begin to study these sciences; and it is for this reason that in most elementary books the authors endeavour to simplify the questions designed for exercising beginners, by proposing them in a less abstract manner than is employed in the pure mathematics, and so as to interest and excite the reader's curiosity. Thus, for example, if it were proposed simply to divide a triangle into three, four, or five equal parts, by lines drawn from a determinate point within it, in this form the problem could be interesting to none but those really possessed of a taste for geometry. But if, instead of proposing it in this abstract manner, we should say: "A father on his death-bed bequeathed to his three sons a triangular field, to be equally divided among them: and as there is a well in the field, which must be common to the three co-heirs, and from which the lines of division must necessarily proceed, how is the field to be divided so as to fulfill the intention of the testator?" This way of stating it will, no doubt, create a desire in most minds to discover the method of solving the problem; and however little taste people may possess for real science, they will be tempted to try iheir ingenuity in finding the answer to such a question at this. (en) |