so:text
|
If you think about things that happen, as being computations... a computation in the sense that it has definite rules... You follow them many steps and you get some result. ...If you look at all these different computations that can happen, whether... in the natural world... in our brains... in our mathematics, whatever else, the big question is how do these computations compare. ...Are there dumb ...and smart computations, or are they somehow all equivalent? ...he thing that I ...was ...surprised to realize from ...experiments ...in the early 90s, and now we have tons more evidence for ... this ...principle of computational equivalence, which basically says that when one of these computations ...doesn't seem like it's doing something obviously simple, then it has reached this ...equivalent layer of computational sophistication of everything. So what does that mean? ...You might say that ...I'm studying this tiny little program ...and my brain is surely much smarter ...I'm going to be able to systematically outrun because I have a more sophisticated computation ...but ...the principle ...says ...that doesn't work. Our brains are doing computations that are exactly equivalent to the kinds of computations that are being done in all these other sorts of systems. ...It means that we can't systematically outrun these systems. These systems are computationally irreducible in the sense that there's no ...shortcut ...that jumps to the answer. (en) |