Mention757625

Download triples
rdf:type qkg:Mention
so:text The main objection to the theory of pure visualization is our thesis that the non-Euclidean axioms can be visualized just as rigorously if we adjust the concept of congruence. This thesis is based on the discovery that the normative function of visualization is not of visual but of logical origin and that the intuitive acceptance of certain axioms is based on conditions from which they follow logically, and which have previously been smuggled into the images. The axiom that the straight line is the shortest distance is highly intuitive only because we have adapted the concept of straightness to the system of Eucidean concepts. It is therefore necessary merely to change these conditions to gain a correspondingly intuitive and clear insight into different sets of axioms; this recognition strikes at the root of the intuitive priority of Euclidean geometry. Our solution of the problem is a denial of pure visualization, inasmuch as it denies to visualization a special extralogical compulsion and points out the purely logical and nonintuitive origin of the normative function. Since it asserts, however, the possibility of a visual representation of all geometries, it could be understood as an extension of pure visualization to all geometries. In that case the predicate "pure" is but an empty addition, since it denotes only the difference between experienced and imagined pictures, and we shall therefore discard the term "pure visualization." Instead we shall speak of the normative function of the thinking process, which can guide the pictorial elements of thinking into any logically permissible structure. (en)
so:isPartOf https://en.wikiquote.org/wiki/Hans_Reichenbach
so:description ยง 13 (en)
so:description The Philosophy of Space and Time (1928, tr. 1957) (en)
Property Object

Triples where Mention757625 is the object (without rdf:type)

qkg:Quotation718443 qkg:hasMention
Subject Property