so:text
|
For Neils Bohr and the Copenhagen interpretation, I respond with Hamlet, "Something is rotten in the state of Denmark." ...The does not collapse. ...There is absolutely no experimental evidence for it. It appears to collapse, yes, but what Hugh Everett showed so beautifully... in the... 50s and 60s is that even if it does not collapse... If you just drop that entirely and just... go with the Schrödinger equation all the way, it's going to appear like it collapses... according to all the usual Copenhagen interpretation rules... t doesn't even have anything particularly fundamental to do with quantum mechanics. ...If you have any sort of physics which lets you make copies of an observer, classically or quantum mechanically, you will experience apparent randomness. ...Suppose you ...clone yourself ...so you can get twice as much done? ...One copy ...wakes up in Room 1 and the other... in Room 2... Are you going to see... a sign that says Room 1 or will you see a 2? You cannot predict this... because... there will be two experiences. ...It seems random. I'm going to see either... with equal probability. This is what fundamentally is happening in quantum physics too. The quantum reality is just bigger than the one we thought we lived in before quantum mechanics, and it has this ability that it can start with something which is one way and make effectively being in two ways. hen we make a measurement, sometimes we find out which copy we were. So I wouldn't worry too much about the way a function collapse. (en) |