so:text
|
The problem of the biquadratic equation was laid prominently before Italian mathematicians by Zuanne de Tonini da Coi, who in 1540 proposed the problem, "Divide 10 parts into three parts such that they shall be continued in proportion and that the product of the first two shall be 6." He gave this to Cardan with the statement that it could not be solved, but Cardan denied the assertion, although himself unable to solve it. He gave it to Ferrari, his pupil, and the latter, although then a mere youth, succeeded where the master had failed. ...This method soon became known to algebraists through Cardan's Ars Magna, and in 1567 we find it used by Nicolas Petri . (en) |