Mention97971

Download triples
rdf:type qkg:Mention
so:text When a constant electric current flows along a cylindrical wire, its strength is the same at every part of the section of the wire. But if the current is variable, self-induction produces a deviation from this... induction opposes variations of the current in the centre of the wire more strongly than at the circumference, and consequently the current by preference flows along the outer portion of the wire. When the current changes its direction... this deviation increases rapidly with the rate of alternation; and when the current alternates many million times per second, almost the whole of the interior of the wire must, according to theory, appear free from current, and the flow must confine itself to the very skin of the wire. Now in such extreme cases... preference must be given to another conception of the matter which was first presented by Messrs. 0. Heaviside and J. H. Poynting, as the correct interpretation of Maxwell's equations as applied to this case. According to this view, the electric force which determines the current is not propagated in the wire itself, but under all circumstances penetrates from without into the wire, and spreads into the metal with comparative slowness and laws similar to those which govern changes of temperature in a conducting body. ...Inasmuch as I made use of electric waves in wires of exceedingly short period in my experiments on the propagation of electric force, it was natural to test by means of these the correctness of the conclusions deduced. As a matter of fact the theory was found to be confirmed by the experiments... (en)
so:isPartOf https://en.wikiquote.org/wiki/Heinrich_Hertz
so:description Electric Waves: Being Researches on the Propagation of Electric Action with Finite Velocity Through Space (1893) (en)
qkg:hasContext qkg:Context47815
Property Object

Triples where Mention97971 is the object (without rdf:type)

qkg:Quotation91556 qkg:hasMention
Subject Property